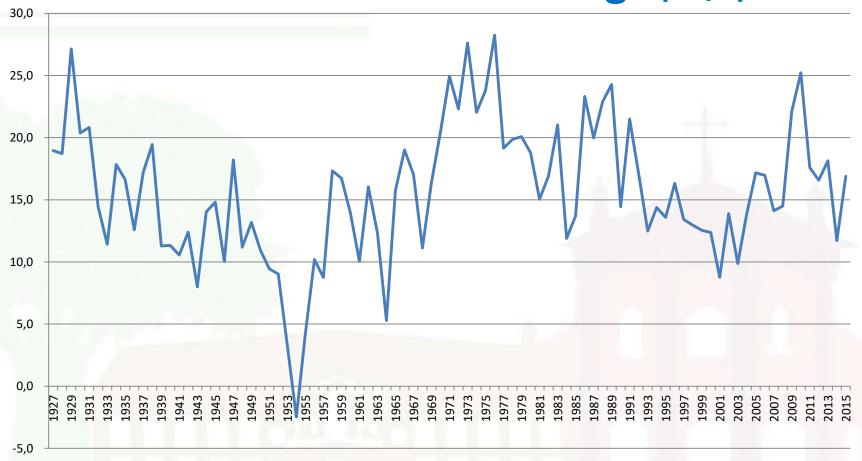


Cenários de Uso da Água e Geração de Energia no Reservatório Billings Região Metropolitana de São Paulo

Edson Fernando Escames

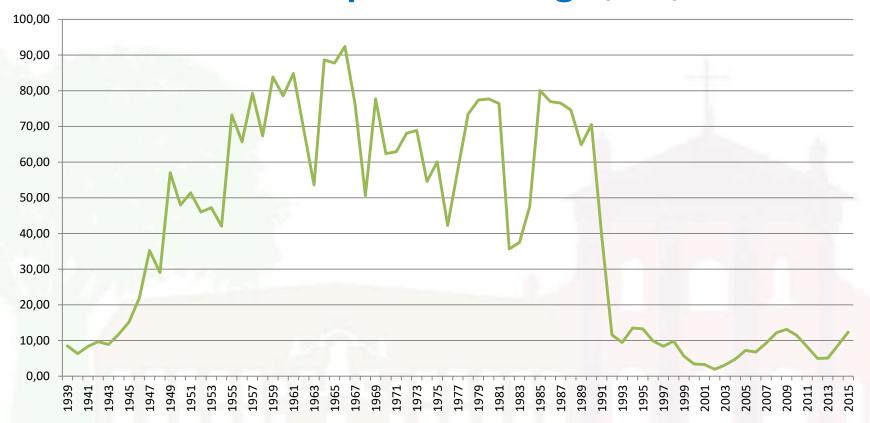
Orientador: Federico Bernardino Morante Trigoso

Coorientador: Ricardo de Sousa Moretti


Questões Norteadoras

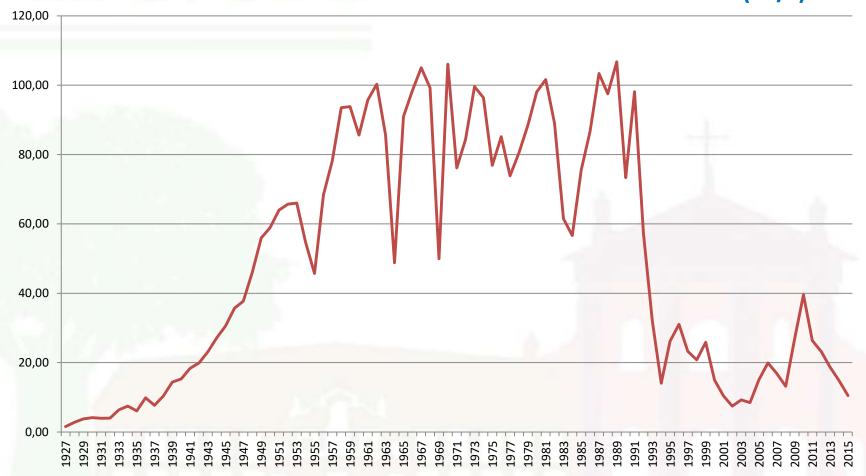
- 1) Lagoa de estabilização no início da Billings
- 2) Desafios
 - Lodo de fundo no início do reservatório
 - Vazão irregular e característica heterogênea do afluentes
 - Conflito com a circunvizinhança
- 3) Vazão de bombeamento adequada?
 - Geração de eletricidade para viabilizar o tratamento
- 4) Lagoa de estabilização aerada?

Vazões Naturais da Billings (m³/s)



Fonte: concebido pelo próprio autor a partir de EMAE, 2018.

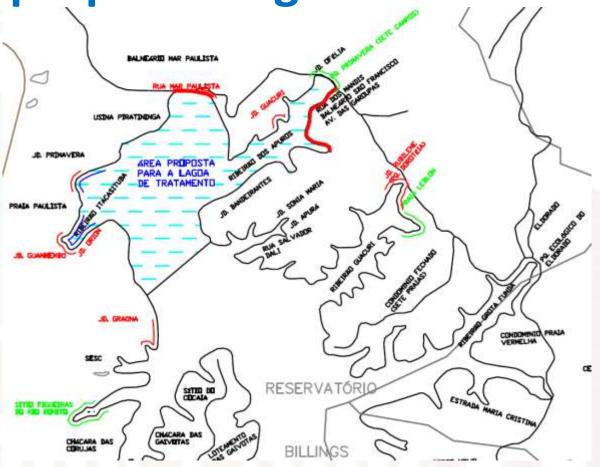
Vazões Médias Mensais Bombeadas de Pedreira para a Billings (m³/s)



Fonte: concebido pelo próprio autor a partir de EMAE, 2018.

Vazões Médias Mensais Turbinadas na UHB (m³/s)

Fonte: concebido pelo próprio autor a partir de EMAE, 2018.


Pressupostos

- Inevitável o bombeamento para controle de cheias
- Manancial importante
- Reduzir riscos: poluição e lodo acumulado
- Necessário tratar a água bombeada
- Sistemas de tratamento por passagem são inviáveis durante as enchentes

Área proposta: lagoa de tratamento

Fonte: elaborado pelo próprio autor a partir da base de dados da EMAE, 2018.

IX CONGRESSO BRASILEIRO DE GESTÃO AMBIENTAL Objetivo Geral

Contribuir para a melhoria da Billings e a ampliação da geração elétrica por meio do tratamento das águas por métodos de acumulação e detenção

Objetivos específicos

- 1) Balanço hídrico da Billings
- 2) Evolução da qualidade das águas bombeadas
- 3) Tratamento por acumulação e detenção em lagoas facultativas aeradas
- 4) Financiamento do tratamento por meio da geração de energia
- 5) Possibilidades e dificuldades institucionais para implantação do projeto
- 6) Impactos socioambientais

Hipótese

Por meio do tratamento é possível viabilizar o bombeamento seguro e pode ser considerada a ampliação do recalque de água para a geração de energia

Justificativa

- Melhoria da qualidade das águas da Billings
 - Bombeadas para o controle de cheias
 - Ampliação dos usos múltiplos
 - Inclusive o incremento da geração elétrica
- Insucesso da flotação
 - Método de tratamento por passagem
- Nova proposta
 - Processo por meio de detenção da água lançada

Etapas e métodos

Vazões

- Naturais do Reservatório Billings (m³/s)
- Médias Mensais Turbinadas em Henry Borden (m³/s)
- Médias Mensais Bombeadas no Reservatório Billings Compartimento Pedreira (m³/s)

Batimetria do Reservatório Billings

- Compartimento da Usina de Pedreira

Metodologia e Entrevistas

- Embasamento teórico: revisão bibliográfica
- Não estruturada e focalizada
- TCLE
- Qualitativa
 - Coleta de dados até atingir o conteúdo almejado
- Especialistas
 - Tratamento de água ou esgoto
 - Gestão de recursos hídricos e energéticos

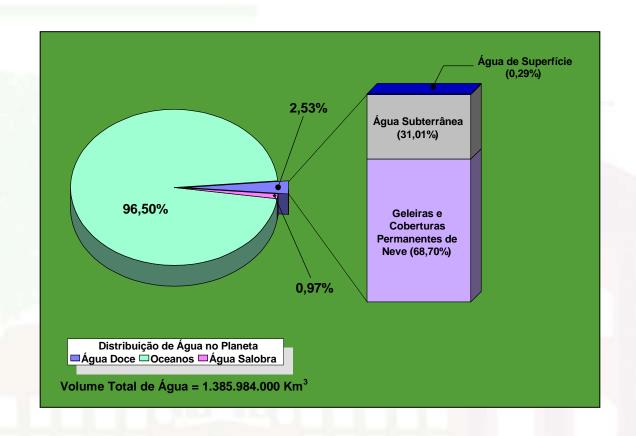
Estrutura da Tese

- Capítulo II Água, Energia e Meio Ambiente
- Capitulo III A Crise de Água e Energia: Problema Global
- Capítulo IV Histórico e Conflitos Dos Usos Múltiplos Na Billings
- Capítulo V Discussão sobre a Viabilidade da Proposta de uma Lagoa Facultativa na Billings
- Capítulo VI Conclusões e Sugestões de Futuras Pesquisas

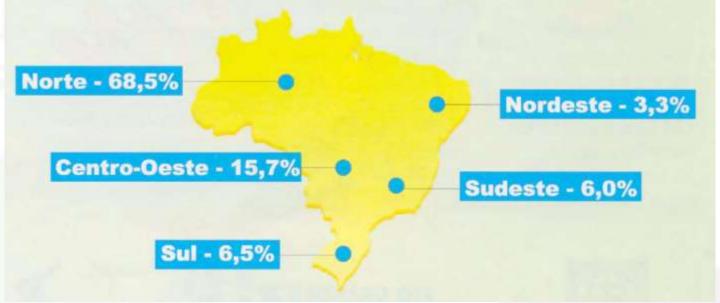
Capítulo II Água, Energia e Meio Ambiente

- Energia e meio ambiente
- Planejamento energético brasileiro
 - MP 579/12 Lei 12.783/13 Decreto 7.891/13
- Hidreletricidade
 - Implantação / Operação
 - Atenuação e compensação
 - Efeitos positivos

Capítulo III Crise Hidrológica e Energética Mundial

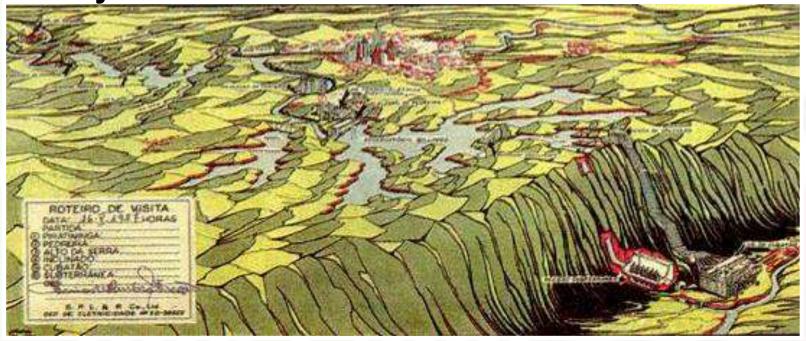


- Recursos Hídricos X Crise Urbana
- Escassez da água
 - Degradação Ambiental
 - Desperdício
- Conflitos mundiais pela posse e uso
- Estresse hídrico
- Irrigação, indústrias e residências
- Uso sustentável
- Proteção de água subterrânea e costeira
- Redução da poluição

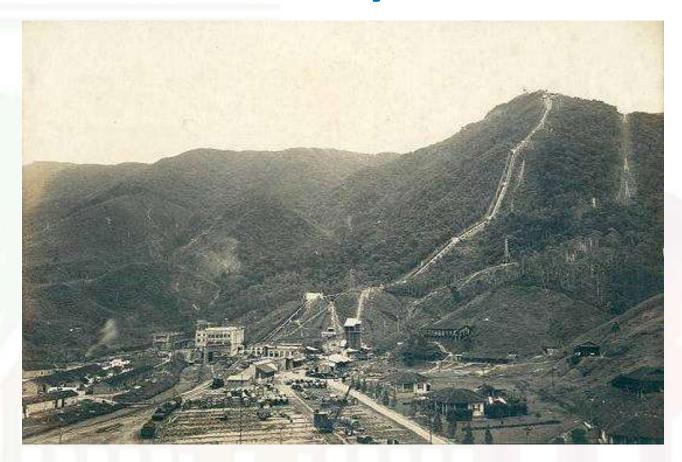


Importância e Disponibilidade

Distribuição desigual de água				
Região	Recurso	Superfície	População	
Norte	68,50%	45,30%	6,98%	
Centro-Oeste	15,70%	18,80%	6,41%	
Sul	6,50%	6,80%	15,05%	
Sudeste	6,00%	10,80%	42,65%	
Nordeste	3,30%	18,30%	28,91%	


São Bernardo do Campo/SP - 26 a 29/11/2018

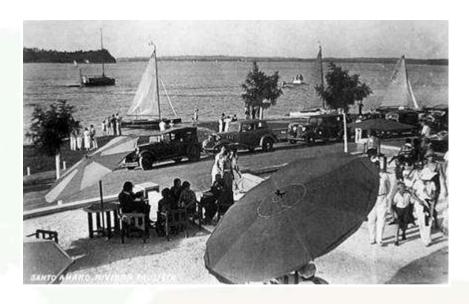
Capítulo IV Conflitos dos Usos múltiplos na Billings


- Light
- Projeto Serra

Usina Henry Borden

Fonte: BILLINGS & BORDEN, 2018.

Avanço da Urbanização na Bacia



Fonte: EMAE, 2018.

Ocupação Desordenada

Represa Guarapiranga - 1934

Represa Billings e Guarapiranga - 2000

Fonte: EMAE, 2018.

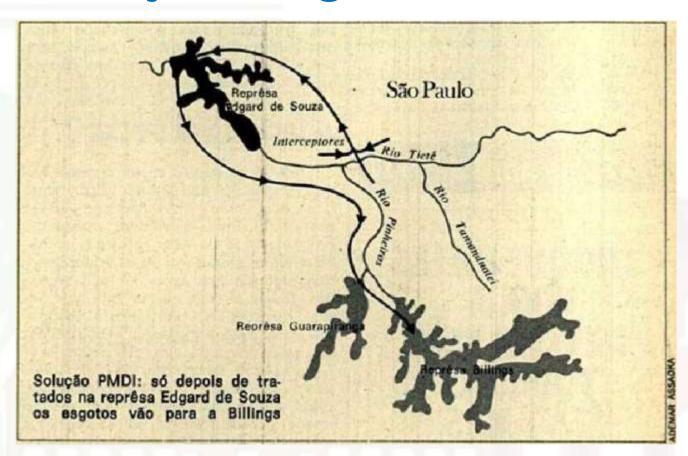
Conflitos dos usos múltiplos

Anos 20 a 70 – Operação Energética	Cenários:
Aproveitamento da queda de 720m e da água vertente oceânica, geração próxima ao centro de carga	implementação da indústria, escassez de energia, água limpa, baixo adensamento populacional.

Anos 80 a 90 – Operação Balanceada	Cenários:
Parte saneamento, parte energética	aumento da população, baixo tratamento dos esgotos, industrialização.

Anos 90 – Operação Ambiental	Cenários:
Restrições ao uso da água: prioridade para	intensa poluição das águas,
abastecimento público	aprimoramento da legislação ambiental.

Solução HIBRACE



Fonte: REVISTA VEJA, 1971

Solução Integrada ou PMDI

Fonte: REVISTA VEJA, 1971

UHB X Restrições Ambientais

Período	Geração Média (MW)	Descarga (m³/s)	Operação
Até Abril/1983	600	101	Energética
De Abril/1983 a	260	(0)	Deleverede
Outubro/1992	360	60	Balanceada
A partir de	128	22	Ambiental
Outubro/1992			

Fonte: preparada pelo próprio autor a partir de FCTH, 2015.

Flotação

Fonte: EMAE, 2018.

Capítulo V Proposta de uma lagoa facultativa na Billings

CENÁRIO 1 - Situação atual

Volume lançado = 100% = média de 8,7 m³/s = 2.756.944.449 m³

Volume tratado = 0%

CENÁRIO 2 – Trata-se somente o que não excede 10 m3/s

Volume lançado = 100% = média de 8,7 m³/s = 2.756.944.449 m³

Volume tratado = 33,33% = média de 2,9 m³/s = 914.808.166 m³

CENÁRIO 3 - Tratamento contínuo de 10 m3/s. Quando esse valor é superado, o excesso é lançado sem tratamento.

Volume lançado = 100% = média de 15,8 m³/s = 4.995.736.282 m³

Volume tratado = 63,29% = média de $10 \text{ m}^3/\text{s} = 3.153.600.000 \text{ m}^3$

Comparação entre tipos de lagoa de estabilização

Área	Área de Tratamento Disponível	Área M2/Hab Média	População Atendida	Tempo de Det. Hidr. Médio (Dias)
Lagoa Anaeróbia (Tratam. Primário)	3.000.000,00	0,04	75.000.000	0,30
Lagoa Facultativa	3.000.000,00	3,50	857.142	22,50
Lagoa Aerada Facultativa	3.000.000,00	0,38	7.894.736	7,50

Fonte: preparada pelo próprio autor a partir de VON SPERLING (1994)

Impacto na vizinhança

- Controle do nível da lagoa de tratamento
 - Para evitar odores
- Tratamento do lodo de fundo
 - Isolamento
 - Remoção
 - Esvaziar
 - Dragagem
 - Geotube (bag)

Impacto na geração de energia

- Geração de energia
 - Superar o regime de cotas

Ampliação da captação d'água

 Valorização imobiliária no entorno da Billings e Pinheiros

Geração de energia

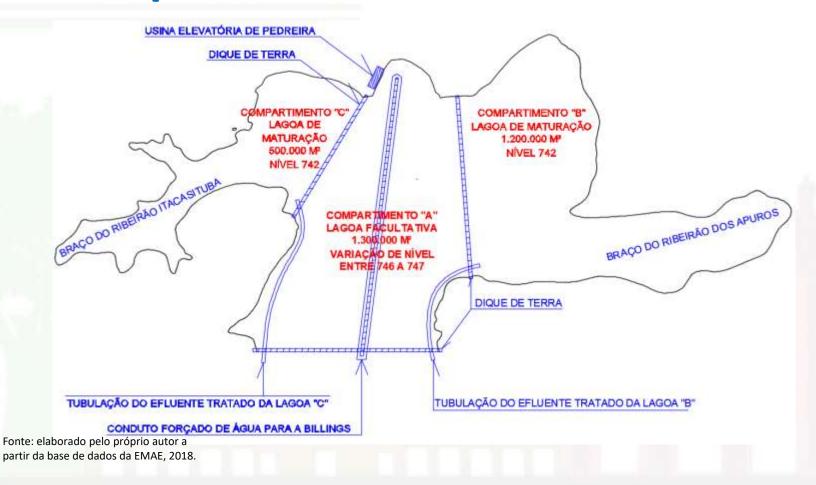
- 15,8 m³/s (Cenário 3) menos 8,7 m³/s (Cenário 1) = 7,1 m³/s (vazão adicional)
- Fator de Conversão da UHB 5,654 MW/m³/s (produtividade)
- Energia Incremental Bruta Anual = 5,654 MW/m³/s x 7,1 m³/s x 8.760 h = 351.656 MWh
- (total de energia em um ano calculada a partir da produtividade da usina)
- Cálculo Final para dez anos de operação:
 - Volume total bombeado no período = 2.249.920.223 m³
 - Energia Incremental Bruta = 40,1 MW médios
 - Número de horas em dez anos = 87.600 horas
 - Custo do MWh médio para hidrelétrica (mar. 2018) = 182,77 R\$/MWh
 - Custo do MWh médio para termelétrica (mar. 2018) = 240,53 R\$/MWh

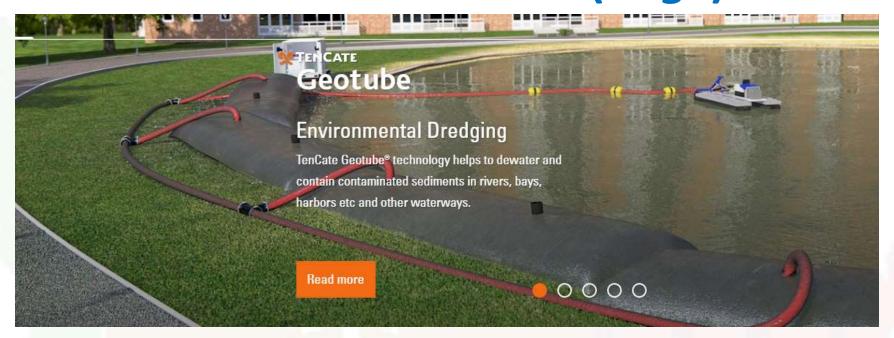
Primeiras chuvas

- Poluição difusa
- Impacto negativo após período de estiagem
 - Volume de espera para o episódio de chuvas
- Profundidade variável da lagoa
- Licenciamento do projeto
 - EIA-RIMA e audiências públicas

Concepção da lagoa de tratamento

Batimetria


Compartimentos central e laterais


Compartimentos central e laterais

Dragagem e acondicionamento do resíduo – Geotube (bags)

Fonte: Tencate Geotube, 2018.

Desidratação do lodo

Fonte: Tencate Geotube, 2018.

Retirada do lodo após a desidratação

Fonte: Tencate Geotube, 2018.

Conclusões

- Importante manancial
- Controle de cheias
 - Poluição difusa nas chuvas iniciais
- Qualidade da energia
- Flexibilizar regras de concessão
- Favorecer a Plenitude dos usos múltiplos

Conclusões

- Lagoa aerada de tratamento
- Primeiras chuvas
- Adequação socioambiental
- Viabilização da Hidrelétrica Henry Borden
 - Substituição da termeletricidade
 - Black-start
 - Proximidade dos centros de carga

Pesquisas Futuras

- Estruturas hidráulicas para a lagoa
- Técnicas de tratamento e monitoramento da lagoa
- Técnicas de dragagem e desidratação do resíduo
- Destinação ambiental final adequada
- Urbanização e paisagismo
- Estudos regulatórios
- Estudos de viabilidade econômica